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ABSTRACT

Most natural systems, including the brain, are highly nonlinear and complex, and determining information �ow among the components that
make up these dynamic systems is challenging. One such example is identifying abnormal causal interactions among di�erent brain areas that
give rise to epileptic activities. Here, we introduce cross-dynamical delay di�erential analysis, an extension of delay di�erential analysis, as a
tool to establish causal relationships from time series signals. Our method can infer causality from short time series signals as well as in the
presence of noise. Furthermore, we can determine the onset of generalized synchronization directly from time series data, without having to
consult the underlying equations. We �rst validate our method on simulated datasets from coupled dynamical systems and apply the method
to intracranial electroencephalography data obtained from epilepsy patients to better characterize large-scale information �ow during epilepsy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126125

Establishing and detecting information �ow in a complex system
with many interacting components is challenging yet crucial for
many scienti�c �elds. Currently available methods for inferring
directionality and causality from observed time series signals are
often limited by the number of data required and computational
processing time. In this study, we present an e�cient and accu-
rate method for measuring causal interaction. We demonstrate
that ourmethod, cross-dynamical delay di�erential analysis (CD-
DDA), can estimate the magnitude and direction of information
�ow in simulateddatasets accurately. Furthermore,we appliedour
method to brain signals obtained from epilepsy patients to char-
acterize previously unidenti�ed seizure-related information �ow.

I. INTRODUCTION

Determination of causality and direction of information �ow
is fundamental to various �elds of science, from neuroscience
to climate research. In neuroscience, for example, information
�ow and the nonlinear dynamical causal architecture in brain

electroencephalography (EEG) data are important for understanding
and predicting events (e.g., seizures). Various regions in the brain
might be causally connected even if the data from those regions do
not show strong correlations. Thismight be due to the spatiotemporal
nonstationarity of the system.

As pointed out by Yule in 1926,36 correlation does not imply
causation. Yule also made a connection between the introduction of
delays and causal relations between time series. In 1969, Granger10

introduced a statistical measure of causality that is widely used in
signal processing. This work is closely related to the work of Wiener,
which was published in 1956.35 Since Granger causality (GC) relies
on linear autoregressive models, it may not yield good results for
some nonlinear systems. To circumvent the limitations of the linear
Granger causality test, Brock et al.8,9 proposed a test based on cor-
relation integrals11 and Baek and Brock,3 Hiemstra and Jones,12 and
Bai et al.4,5 and then introduced nonlinear Granger causality. In 2000,
Schreiber32 introduced transfer entropy for information transfer
between nonlinear dynamical systems. If the systems are linear Gaus-
sian processes, GC and transfer entropy are equivalent.6Determining
causality from dynamical attractors of nonlinear dynamical systems
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and the concept of generalized synchronization (GS)were introduced
by Schi� et al.,31 Arnhold et al.,2 Hirata et al.,13,14 and Sugihara et
al.,33 among others. One implementation is Sugihara’s convergent
cross-mapping (CCM).33 CCM is based on standard uniform delay
embeddings and is, therefore, limited to a subset of the dynamical
systems found in nature. In 2018, a focus issue in Chaos was pub-
lished that summarizes recent developments for causality detection.7

Recent articles used complex network theory to characterize causality
of multivariate data.28,37

Here, we determine causality through nonlinear, nonuniform,
functional embeddings as an extension of delay di�erential analy-
sis (DDA) and call this method cross-dynamical DDA (CD-DDA).
We �rst test CD-DDA on simulated data from coupled dynamical
systems and then apply this analysis to investigate spatiotemporal
information �ow in the brain before and during seizures.

This paper is organized as follows: Sec. II introduces classical
DDA and the extension to CD-DDA to study causality. In Sec. III,
causal interactions of coupled Lorenz and Rössler systems are inves-
tigated. In Sec. IV, CD-DDA is applied to epileptic seizures. SectionV
is the conclusion.

II. DETECTING CAUSALITY USING DELAY
DIFFERENTIAL ANALYSIS (DDA)

DDA combines di�erential embeddings with linear and non-
linear nonuniform functional delay embeddings22,30,34 to relate the
current derivatives of a system to the current and past values of
the system variables.15,18 Inspired by Max Planck’s “natural units,”25

the DDAmodel maps experimental data onto a set of natural embed-
ding coordinates.

The general nonlinear DDA model is

u̇ =

I
∑

i=1

ai

N
∏

n=1

umn,i
τn

+ ρu = Fu + ρu (1)

for τn,mn,i ∈ N0, where N is the number of delays (usually 2), I is
the number of terms (typically around 3), and uτn = u(t − τn), relat-
ing the signal derivative u̇ to the signal nonuniformly shifted in time.
We then use the coe�cients ai and the least square error ρu as fea-
tures. Note thatwe explicitly addedρu to highlight its use in the causal
DDA measure introduced below. To restrict complexity of the DDA
model, most of the terms in Eq. (1) are set to zero.We, therefore, con-
sider here DDAmodels with two delays τn, three terms, and a degree
∑

i mn,i ≤ 4 of nonlinearity.
To put DDA in context, a general nonlinear, real-valued func-

tion can be expressed in a Taylor series expansion of functionals
of increasing complexity around some �xed point. When the func-
tion F(?) represents the behavior of a dynamical system, that is, a
time series model where the input is formed from past inputs [u(t),
u(t − τ1), . . .], the expansion becomes a Volterra series. We have

u̇ = u0 +

∞
∑

i=0

giuτi +

∞
∑

i1=0

∞
∑

i2=0

gi1 ,i2uτi1
uτi2

+ · · ·

+

∞
∑

i1=0

∞
∑

i2=0

. . .

∞
∑

iq=0

gi1 ,i2 ,...,iquτi1
uτi2

. . .uτq , (2)

with the linear and nonlinear data components modeled as separate
model terms. To �nd a model that is a projection onto a stable man-
ifold, we consider low-order models composed of a �nite number of
leading terms in Eq. (2), such as Eq. (1). This makes CD-DDA di�er-
ent to GC since we use (1) a derivative on the left side of the equation
instead of the time series itself in GC, (2) nonuniform functional
embeddings on the right side of the equation that were selected from
the data instead of uniform linear embeddings of lags 1,2,. . . in GC,
(3) two delays instead of a chain of around 10–15 delays in GC, and
(4) three term models that are selected to �t each time series instead
of around 15 general terms.

To bemore explicit, let us give an example. A typicalDDAmodel
for the analysis of EEG and intracranial EEG (iEEG) data is the three
term model [all ai in Eq. (1) except three are set to zero]:

u̇ = a1u1 + a2u2 + a3u
4
1 + ρu , (3)

where u(t) is the time series from one EEG channel and ui = u(t −

τi). The derivative on the left side is computed using a 5-point center
derivative algorithm.21The coe�cients ai are estimated with numeri-
cal singular value decomposition (SVD) to minimize the least square
error.26 The DDA model that best �ts the overall dynamical proper-
ties of the system [e.g., (3) for EEG data] can be found by supervised
(maximizing the classi�cation performance) or unsupervised (min-
imizing the least square error ρ) structure selection from a list of
candidate models (see, e.g., Refs. 18 and 17).

DDA is a nonlinear data analysis framework that (1) uses unpro-
cessed data so as not to disturb the nonlinear properties of the data,
(2) uses sparse models that match the macroscopic architecture of
the underlying dynamical system, (3) disregards amplitude informa-
tion to concentrate on the dynamical aspects of the data, and (4)
can be extended for detection of dynamical causality in the data to
understand information �ow in the system. Previously, it has been
demonstrated thatDDA captures essential features of data to produce
exceptional classi�cation performance.

Let us consider two dynamical systems from which the time
series u(t) and v(t) are measured, respectively. In order to consider
whether there is a causal interaction between these two time series,
we start by looking for a model

u̇ = Fu + ρu, (4)

minimizing the error for the time seriesu.We alsominimize the error
for v(t) and get

v̇ = Fv + ρv. (5)

If we assume, for example, a unidirectional causal in�uence of u(t)
on v(t),

u̇ = Fu + Fv + ρuv, (6)

the errors ρu and ρuv should be similar since the coe�cients ofFv are
irrelevant. In contrast, for

v̇ = Fv + Fu + ρvu, (7)

the errors ρv and ρvu are di�erent.
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We then de�ne Cuv as our CD-DDA measure of the causal
in�uence of v(t) on u(t) and Cvu for a causal in�uence of u(t) on v(t),

Cuv = |ρu − ρuv |; Cvu = |ρv − ρvu | . (8)

We additionally use the signi�cance µ
σ , where µ is the mean

and σ is the standard deviation, of the estimated coe�cients of the
termsFv in Eq. (6) andFu in Eq. (7) to estimate the synchronization
level, S .

III. APPLICATIONS TO SIMULATED DATA

To test CD-DDA, we generate simulated data from coupled
Rössler27 and Lorenz20 systems. The �rst example was previously
studied in Ref. 24 and is an autonomous, chaotic Rössler system driv-
ing a periodic Rössler system. Our second simulated example is a
Rössler system driving a Lorenz system.19,23,24 For the coupled Rössler
system, the functionsFu andFv are the same. For the coupledRössler
and Lorenz system, we need to select individual functionsFu andFv

since these two systems are dynamically di�erent.
We compared our measure with linear Granger causality,10

transfer entropy or conditional mutual information,32 and conver-
gent cross-mapping33 for a chaotic Rössler system driving a periodic
Rössler system and for a Rössler system driving a Lorenz system. Our
measure performed aswell or better than the other threemeasures for
both of these systems, and we report these �ndings in Figs. 2 and 4
in the supplementary material.

A. Chaotic Rössler system driving a periodic Rössler
system

In this example, we unidirectionally couple two Rössler systems,
where the driving system R1 is chaotic and the driven system R2 is
periodic24

R1











ẋ1 = −ω1 y1 − z1,

ẏ1 = x1 + a y1,

ż1 = b + z1(x1 − c),

R2











ẋ2 = −ω2 y2 − z2 + ε(x1 − x2),

ẏ2 = x2 + a y2,

ż2 = b + z2(x2 − c),

(9)

with a = 0.15, ω2
1 = 1.015, ω2

2 = 0.985, b = 0.2, and c = 10. We
modi�ed the system in Ref. 24 to the system above as explained in
theAppendix. The coupling strength ε was varied between 0 and 0.25
using 30 000 linearly spaced steps. The integration step size was set
to 0.05 with a transient of 105 time points discarded. The remaining
data were downsampled by a factor of 2 resulting in 105 data points
for each coupling strength.

We selected the DDAmodels by minimizing the model error ρu

from u = x1 or u = x2 and get

Fu = a1 u1 + a2 u2 + a3 u
3
1, (10)

with uj = u(t − τj), τ1 = 32 δt, τ2 = 9 δt, and δt = 0.025.
We calculated Cuv and Cvu for u = x1 and v = x2 in sliding win-

dows (window duration 3000 δt or 50 pseudoperiods, window shift
1000 δt) and show these results in Fig. 1 (middle panel).

FIG. 1. Pearson correlation r between response system components x2 (system
R2) and x3 (system R3) for determining the onset of synchronization (dashed
line) between R1 and R2 (upper panel). Cross-dynamical measures for a driven
periodic Rössler system by a chaotic Rössler system across coupling strength, ε.
For each coupling strength, 97 timewindows are plotted as dots. Blue dots indicate
chaotic driving periodic (Cvu), and red dots periodic driving chaotic (Cuv ) (middle
panel). The average across time windows for each coupling strength is overlaid
in cyan and orange. Pearson correlation between Cuv across time windows for εk
and εk+1 in red and for Cvu in blue. Both values converge to one after the onset of
generalized synchronization.

Each coupling strength displays Cvu for all time windows in the
direction of u = x1 to v = x2 (blue dots) and Cuv in the direction of
v to u to (red dots). Cvu increases with increasing coupling strength
while Cuv remains close to zero and begins to increase around the
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FIG. 2. Effect of short time windows: the left plot shows the CD-DDA causality
measures Cuv and Cvu (u = x1, v = x2) for system (9) for a window length of 300
δt, or 5 pseudoperiods. This plot can be compared to the middle panel in Fig. 1.
The right plots show our synchronization measure or significances Suv and Svu

for the maximum of the additional three DDA parameters.

onset of generalized synchronization (GS), estimated as ε=0.12 in
previous work based on conditional Lyapunov exponents24 and based
on the auxiliary systems approach1 as shown in Fig. 1, upper panel.
GS occurs in nonidentical, unidirectionally coupled oscillators when
there is a map between trajectories on the driving attractor and tra-
jectories on the response attractor.29 The auxiliary systems approach
requires introducing a second response system R3 [with the vari-
ables (x3, y3, z3)] that is identical to R2, except for initial conditions.
To determine the onset of synchronization between R1 and R2, we
see when the two driven response systems undergo complete syn-
chronization or when the Pearson correlation between x2 and x3 is
1 (Fig. 1, upper panel). We can also estimate the onset of general-
ized synchronization by correlating Cuv for εk with εk+1 across all
time windows, and doing the same for Cvu (Fig. 1, lower panel). After
the onset of synchronization, neighboring ε values share the same
synchronized manifold, whereas before, neighboring ε values follow
distinct driven attractors.

In Fig. 2 (left panel), we investigate the e�ect of short time
windows (see also Fig. S1 in the supplementary material). While
the main e�ect of Cvu remains for even just �ve pseudoperiods, we
also see Cuv unexpectedly increase before the onset of generalized
synchronization.

In Fig. 2 (right panel), we show the onset of generalized syn-
chronization in a purely data driven manner: �rst, we estimate the
signi�cances for the three additional, cross DDA parameters of Fv

andFu in Eqs. (6) and (7). Then, we recalculate the signi�cancemea-
sures for two slightly di�erent window lengths (300 ± 20 δt). When
the two time series u and v are not synchronized, trajectories on the
driving and driven attractors are unrelated, and di�erent window
lengths will yield similar signi�cance measures. If the time series are
synchronized, then there is a map between trajectories on the driving
and driven attractors, and measures of signi�cance will be sensitive
to window length. To assess synchronization, we take the maximum
of the threeDDAparameters that shows the greatest di�erence across
window lengths. We call this our measure of synchronization, S .

We are able to recover the correct direction of causal inference
for coupling between 0.05 and 0.15 for the longer (Fig. 1, middle
panel) and shorter (Fig. 2, left panel) data windows, as well as after
adding 20 dB noise (see Fig. S1 in the supplementary material).

B. Rössler system driving Lorenz system

In this example, we unidirectionally drove a Lorenz system L

with a Rössler system R23

R











ẋ1 = −α(y1 + z1),

ẏ1 = α(x1 + ay1),

ż1 = α(b + z1(x1 + c)),

L











ẋ2 = σ(−x2 + y2),

ẏ2 = Rx2 − y2 − x2z2 + εy21,

ż2 = x2y2 + βz2,

(11)

where a = b = 0.2, c = −5.7, σ = 10, R = 28, and β = −8
3 .

FIG. 3. Pearson correlation r between response system components y2 (system
L) and y3 (system L2) for determining onset of synchronization between R and
L. Cross-dynamical measures for a driven chaotic Lorenz system by a chaotic
Rössler system across coupling strength, ε. For each coupling strength, C for 97
time windows are plotted as dots. Blue dots indicate u = y1 driving v = y2 (Cvu),
and red dots denote v driving u (Cuv ).The average across time windows for each
coupling strength is overlaid in cyan and orange.
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FIG. 4. Effect of short time windows: the left plot shows the CD-DDA causality
measures Cuv and Cvu (u = y1, v = y2) for system (11). This plot can be com-
pared to the middle panel in Fig. 3. The right plots show the significances Suv and
Svu for the maximum of the additional three DDA parameters.

α adjusts the timescale of the Rössler system tomatch that of the
Lorenz and is set to 6. We varied the coupling strength, ε, between
0 and 6 over 1000 linearly spaced values. We implemented an inte-
gration step size of 0.01, removed a transient of length 105, and
evaluated 105 data points for each coupling strength. As with the cou-
pled Rössler system, we introduce an identical copy of the response
system L, L2 (with components x3,y3, and z3), which is also driven
by R and only di�ers from L in initial conditions. We determinedFu

and Fv for u = y1 and v = y2 from Eq. (12) by �tting all three-term,
two-delay DDA models up to order 3 nonlinearity, scanning delays
between 6 and 60 δt, and selecting the model and delays with the
lowest error. This exhaustive model search was performed separately
for u and v with no coupling, and is then applied to u and v for all
subsequent coupling strengths

Fu = a1 u1 + a2 u2 + a3 u
2
1,

Fv = b1 v1 + b2 v1v2 + b3 v1v
2
2,

(12)

where τu,1 = 7 δt, τu,2 = 6 δt, τv,1 = 6 δt, and τv,1 = 22 δt.

FIG. 5. Classical DDA: coefficient a1 for 113 channels for Patient 1 in Ref. 17. In
the upper panel, a1 for each channel is shown in a different color. The lower panel
shows the values of a1 as color across all 113 channels (rows) to identify the onset
channels. The onset channels marked by the neurologist are indicated by stars
on the y-axis. The dotted line marks the seizure onset from the neurologist.

FIG. 6. CD-DDA: in the upper panels of (a) and (b), Cvu for all channels u to
one channel v [onset channel in (a) and nononset channel in (b)] is shown and
in the lower panels, Cuv for one channel v [onset channel in (a) and nononset
channel in (b)] to all other channels u is shown. The onset channels marked by
the neurologist are indicated by stars on the y-axis.

Once the models are selected, we evaluate Eq. (8) in a slid-
ing window (window duration 3000 δt or 30 pseudoperiods, window
shift 1000 δt) for each coupling strength, ε. In Fig. 3, each coupling
strength displays C for all time windows in the direction of u = y1
to v = y2 (Cvu, blue dots) and v to u (Cuv, red dots). Our approach
shows Cvu increases as the coupling strength increases, whereas Cuv

slightly increases before the onset of GS for this system, which pre-
vious work estimates around ε = 2,23 and we have estimated to be
ε = 2.2 using the auxiliary systems approach. We also show in Fig. 3
lower panel the onset of synchronization by correlating C across time
windows between εk and εk+1. We can also recover the correct direc-
tion of causal inference using signi�cantly less data, that is, using
300 δt instead of 3000 δt, shown in the left panel of Fig. 4. Further-
more, we can also estimate the onset of synchronization with Suv

and Svu, as shown in the right panel of Fig. 4. Notably, Suv in red
goes up near the estimated onset of synchronization determined in
Fig. 3. Overall, C determines the correct direction of causal infer-
ence for no noise and 20dB noise (see Fig. S3 in the supplementary
material).

IV. DETECTING CAUSALITY IN EPILEPTIC SEIZURES

In Ref. 17, a genetic algorithm (GA)was used to select themodel
with minimum error from one second data segments for one hour
periods centered on the seizure onset times. Around onemillion such
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FIG. 7. CD-DDA: enlarged region around the seizure in Fig. 6.

data segments (155 seizures, 730 iEEG channels from 13 patients)
were analyzed in this way. The patient demographics and character-
istics are described in Ref. 17 The DDAmodel selected in Ref. 17 for
the characterization of epileptic seizures is

u̇ = a1u1 + a2u2 + a3u
4
1 + ρu = Fu + ρu, (13)

with ui = u(t − τi).
Model (13) bifurcates at the seizure onset, as shown in Ref. 17:

it has a low error after seizure onset, but not before. This DDAmodel
will be used in the remainder of this section.

In Ref. 17, eight delays were chosen to characterize and segment
the data using truncated higher order SVD. In this paper, we only
use the delay pair τ = (7, 10) δt, where δt = 1

fs
with the sampling

rate fs = 500Hz since this delay pair proved to be su�cient for the
characterization of epileptic seizures.

FIG. 8. The left panel shows the channel locations (for more information, see
Patient 1 in Ref. 17) and the right panel shows a grid of these locations. The
boxes in grayscale are the Cuv values or information sent by the onset channel to
all other channels at the time of the highest peak in the upper panels in Fig. 6(a), at
around 10 s after the seizure onset marked by the neurologist. The circles indicate
the onset channels determined by the neurologist. The darker magenta boxes are
background and the lighter magenta boxes indicate bad channels.

In Fig. 5, the coe�cient a1 from Eq. (13) is shown for 113 chan-
nels. The onset channels are marked with stars on the y-axis. As
discussed in Ref. 17, these plots can be used to localize the seizure
onset region in the brain.

We can extend this analysis to CD-DDA to determine the infor-
mation �ow patterns during seizures.Fu andFv are the same model
as Eq. (13) since all data are iEEG data. u(t) and v(t) are recordings
from two di�erent channels. Each channel is paired with all other
channels and the information received and sent is computed for each
pair.

The same seizure in Fig. 5 is shown in Fig. 6, where we show
information received from all other channels (upper panels) and
information sent to all other channels (lower panels) for an example
onset channel (a) and for an example nononset channel (b). Figure 7
zooms into the time around seizure onset. While both channels send
information to another onset channel marked with a magenta arrow
just before the seizure starts, only the onset channel subsequently
receives information from the majority of channels at the time of
the seizure. This patient has one evoked seizure, �ve fully developed
spontaneous seizures (�rst of these seizures is shown in Figs. 5–7),

FIG. 9. Time line of the CD-DDA feature Cuv from Fig. 6(a) lower panels and the classical DDA feature a1 from Fig. 5. The window length for each box is a quarter of a
second with a window shift of half that length. The features Cuv and a1 are mapped onto the same grid and color axis as in Fig. 8 with a white background.
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and one nonfully developed seizure. In the supplementary material,
we show C for all seizures as well as for stimulations. All spontaneous
seizures except the nonfully developed one show the same signature,
where the onset channel receives a large response from a majority of
channels once the seizure starts. The last seizure, seizure 6, is di�er-
ent because the response from the nononset channels is too weak to
keep the seizure developing.

In Fig. 8, the CD-DDA feature Cuv from Fig. 6 at the peak in
the upper panels (around 10 s after marked onset) is mapped onto
a grid (right panel) that was derived from the channel locations in
the clinical report (left panel). Details and exact channel locations
can be found in Ref. 17 (Patient 1). The circles denote the clinically
marked onset channels. It is obvious that the region around the onset
channels is sending most of the information (see also Fig. 7, magenta
arrows). To investigate that further, we plotted such a grid for each
sliding data window, where the window length is a quarter of a sec-
ond and the window shift is half that length. Figure 9 shows such a
time line for the CD-DDA feature Cuv from Fig. 6 and the classical
DDA feature a1 from Fig. 5. CD-DDA not only shows the start of the
seizure earlier but also shows a constant information �ow from the
onset regions. Classical DDA, on the other hand, shows the gener-
alization of the seizure and the involvement of the whole brain after
seizure generalization.

V. CONCLUSION

We have developed a new tool for studying causality called CD-
DDA and tested it on simulated data from dynamical systems and
then further applied this technique to epileptic seizure data. Using
CD-DDA, we can recover the direction of causal interaction between
unidirectionally coupled systems with small parameter mismatch as
well as nonequivalent systems, even with short time series and in the
presence of noise (see supplementary material). Furthermore, CD-
DDA can detect the onset of generalized synchronization (GS).

We have also shown that CD-DDA provides a useful measure
of information �ow in the brains of human patients experiencing
seizures. By computing C for both directions for each channel, we
can identify the channels that seem to be sending out information
around the time of seizure onset. These channels match up well to
the clinically determined onset channels. Future work will explore
further applications of CD-DDA to brain data.

SUPPLEMENTARY MATERIAL

In the supplementary material, we present CD-DDA results for
the simulated data from the Rössler and Lorenz systems in Sec. III
for di�erent window lengths and added white noise with a signal-to-
noise ratio of SNR= 20 dB.We further show for the epilepsy patient of
Sec. IV the CD-DDA outputs for 160 hours of data and plots around
each of the seven seizures (from 30 s before to 2min after seizure
onset) as well as a plot for a stimulation.
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APPENDIX: EQUIVALENT RÖSSLER SYSTEMS

To remove the confusion of interpreting ω as a time scaling
factor, we changed the Rössler system in Ref. 24 from

ẋ = −� y − z,
ẏ = � x + a y,
ż = b + z(x − c)

(A1)

to
ẋ = −ω y − z,
ẏ = x + a y,
ż = b + z(x − c),

(A2)

with ω = �2. Both systems are exactly the same up to a scaling y →

�y of the y-component in the second system. As shown in Ref. 16,
ω is one of the four possible bifurcation parameters of the Rössler
system27 since it can be written as16

ẋ = − 1
B y − 1

K
1
C z,

ẏ = B x + a y,
ż = C b − c z + K x z.

(A3)
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